翻訳と辞書 |
K-Poincaré algebra : ウィキペディア英語版 | K-Poincaré algebra In physics and mathematics, the κ-Poincaré algebra, named after Henri Poincaré, is a deformation of the Poincaré algebra into an Hopf algebra. In the bicrossproduct basis, introduced by Majid-Ruegg〔Majid-Ruegg, Phys. Lett. B 334 (1994) 348, ArXiv:(hep-th/9405107 )〕 its commutation rules reads: * * * Where are the translation generators, the rotations and the boosts. The coproducts are: * * * The antipodes and the counits: * * * * * * * * The κ-Poincaré algebra is the dual Hopf algebra to the κ-Poincaré group, and can be interpreted as its “infinitesimal” version. ==References==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「K-Poincaré algebra」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|